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Abstract. We present results from the application of two conformational search methods:
genetic algorithms (GA) and parallel direct search methods for finding all of the low energy confor-
mations of a molecule that are within a certain energy of the global minimum. Genetic algorithms
are in a class of biologically motivated optimization methods that evolve a population of individ-
uals where individuals who are more “fit” have a higher probability of surviving into subsequent
generations. The parallel direct search method (PDS) is a type of pattern search method that uses
an adaptive grid to search for minima. In addition, we present a technique for performing energy
minimization based on using a constrained optimization method.
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1. Introduction. An important goal of computational chemistry research is the
design of molecules for specific applications. Examples of these types of applications
occur in the development of enzymes for the removal of toxic wastes, the development
of new catalysts for material processing, biosensor design and the design of new anti-
cancer agents. Factors that must be taken into account include shape, size, electronic
properties, and reactivity. For many physical and biological properties, the molecular
conformation largely determines the final function, and this is the rationale for the
development of a large number of conformation search methods.

The general approach is to search the conformation space of a molecule in order to
find all energy minima within a prescribed energy range. The problem can be broken
into two major parts: defining the energy function and finding efficient methods for
performing the conformational search. In general, one can decompose the search into
two phases. In the first phase, we are interested in performing a coarse but broad
search. This stage generates a number of interesting conformations that can be used
as starting guesses for the second phase, which is local energy minimization. The
global search phase is conceptually the harder of the two because the size of the
parameter space is so large. Additionally, local information about the surface rarely
provides definitive clues regarding the location of the global minimum. Because it
is difficult to exhaustively search the conformation space of any but the smallest
molecules, a number of statistical heuristic methods have been developed [21, 43].
These include pure random search, simulated annealing [45], Cartesian coordinate
directed tweak [42], taboo search [11], parallel stochastic methods as in [7, 8], genetic
algorithms [23, 24, 27] and direct search methods [29, 32, 33, 46]. Non-stochastic
methods have been developed, including Scheraga’s diffusion method [25] and a class
of branch-and-bound methods due to Floudas [30]. A discussion of many of the
methods used for molecular conformation and protein folding can also be found in
[37, 38]. All of these methods can be made to work well on a selected set of molecules,
but it is important to perform head-to-head tests between different methods to assess
their relative strengths.
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We are primarily concerned here with the efficient broad search of conformation
space to generate all of the low energy conformations within a prescribed energy of
a global minimum. In this sense, this work is similar in spirit to that of Saunders et
al. [43]. In particular, we present a comparison of two search methods, the GA and
PDS methods, for this problem. Genetic algorithms draw on a set of evolutionary
metaphors including selection of fit individuals, mutation, and genetic crossover. PDS
methods belong to a class of optimization algorithms developed by Dennis and Torc-
zon [12] that can be viewed as multidirectional line search methods. These methods
are robust, simple to implement, and easily parallelized. We note that neither of these
methods has as its main goal that of finding all minima within a certain distance of
the global minimum, but earlier work has indicated that both of these methods might
be applicable to this problem.

In addition, we present a technique for computing local energy minimization based
on a constrained optimization method. This method (originally described in [40]) is
based on transforming an unconstrained optimization problem in torsion space into
a constrained optimization problem using distance constraints that makes the energy
minimization more tractable.

The paper is organized as follows. Section 2 describes the energy functional
that we seek to minimize. Section 3 gives an outline of two conformational search
methods used in this paper. Section 4 gives a description of the new constrained
optimization method for performing energy minimization. In Section 5 we describe
the test problems and give numerical results. Section 6 follows with an analysis of the
results.

2. Potential Energy Equations. The conformational search problem can be
stated as a problem of finding the molecular conformation that yields the lowest energy
for a particular N-atom molecule, that is,

where F is the energy of the molecule given its coordinates z,y,z € RN. Using this
formulation, the conformational search problem can be viewed as a global optimiza-
tion problem. Unfortunately, because the total energy of a molecule depends on all
atom-atom interactions, the number of possible low-energy configurations can grow
exponentially with the number of atoms and has been estimated by Hoare to be on
the order of O(eNz) for an N-atom molecule [19].

The energy that we wish to minimize can take many forms, but it is usually
computed as a sum of terms that are functions of bond distances between two atoms,
bond angles between three atoms, dihedral or torsion angles between four atoms,
improper torsion angles, various non-bonded terms (Coulombic potentials, van der
Waals potentials) and perhaps including solvent effects.

In this paper we will use the potential energy equations used in CCEMD (Center
for Computational Engineering Molecular Dynamics) [22]. These equations corre-
spond to the force field used in QUANTA/CHARMMI19 [5, 41] with modifications to
comply with the force field in CHARMMZ22. Here we only present a brief statement
of the major terms. The total energy is given by

(2) E:Eb+E9+E¢+Ew+ELJ+Eel.
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The first four terms correspond to covalent bond interaction terms between atoms,
while the last two terms correspond to nonbonded forces between any two atoms. The
bonded energy term is defined by

Nbond . . .
(3) Ey= Y k(' —rp),

i=1

where kj is the force constant for bond i,r? is the bond distance, and r{ is the equi-
librium bond distance. The bond angle energy term is given by

Nangle

(4) Eg= Y ky(#" —6;)°,
i=1

where &} is the force constant for bond angle i, % is the bond angle, and 6 is the
equilibrium bond angle. The dihedral angle energy term is

Nainedral
(5) Ey= Y > |kl —kcos(nj¢),
J

i=1

where k:f is a force constant, nf is an integer that can take on the values 1,2,3,4,6
and ¢* is the dihedral angle. The improper torsion angle is defined as

Nimproper

(6) E,= Y kW -w)?
i=1

where k! is the force constant for improper torsion, w’ is the torsion, and wj is the
equilibrium torsion angle.

In addition to the bonded interactions, there are forces due to non-bonded inter-
actions. The van der Waals term is usually taken to be of the form of a Lennard-Jones
potential,

Ai' Bi'
(7) Ery= Z (rlg o r6]> SW(TU)’

i#j \ 4 i

where A;; = €;; agjz, B;j = 2¢y; afj, and €;5, 0;; depend on the atoms i and j. The term

sw(r;;) is a switching function that is used to cutoff the potential at long distances. A
variety of switching functions may be used depending on the application (for details
see [22]).

The final term due to the electrostatic potential is given by

4:q;
8 Eu=Y 2 sw(ry),
®) 1= e wlry)

where ¢; and g; are the charges on atoms ¢ and j respectively and g is a dielectric
constant.
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3. Search Methods. In this paper, we make the distinction between a search
method and a minimization method for the conformation problem. By a search
method we will mean any algorithm that is used to perform a coarse search of the
parameter space to look for starting guesses for a gradient-based local minimization
algorithm. In this sense, both genetic algorithms (GA) and parallel direct search
(PDS) methods are good candidates for search methods since they can be used to
quickly sample a large region of the parameter space. In addition, both of these
methods are easily parallelized. This section describes the major features of the GA
and PDS methods and how they are applied to the conformation problem.

3.1. Genetic Algorithms. We present here only a brief introduction to our
variant of the standard GA method [17]. The most important idea is that we work
with a population of individuals that will interact through genetic operators to carry
out an optimization process. An individual is specified by a chromosome that is a
bit string of length N, that can be decoded to give a set of physical parameters.
In what follows, chromosome and bit string are synonymous. The function to be
optimized, also called the fitness function, is used to rank the individual chromosomes.
Optimization proceeds by generating populations whose individuals have increasingly
higher fitness. An initial population of N,,, individuals is formed by choosing Np,p
bit strings at random and evaluating each individual’s fitness.

Conformations are represented as bit strings that code for the free torsion angles in
the molecule. All bond distances and angles are held fixed. Each torsion is represented
by n bits giving a resolution of 360/(2" — 1) degrees. Typical values of n range from
6 to 12. If b is the Gray coded binary value of the angle, the value in degrees is
360b/(2™ — 1). The chromosome for the individual is constructed by concatenating
the bit strings for the individual torsions. The three principal operators are selection
of parents, crossover, and mutation.

In our selection operator, every individual in the top ranked 40% of the population
has an equal chance of being selected for mating. All individuals in the bottom ranked
60% of the population are discarded. The fitness is the negative of the potential energy.
The crossover operator takes a pair of parents and chooses a random cut point along
the bit string. The chromosome of the first child is filled in with the bits to the left of
the cut point from the first parent and the bits to the right of the cut point from the
second parent. The second child gets the complementary bits from the two parents.
Note that the crossover point is not restricted to lie on the boundaries separating
dihedrals. Doing so restricts the search too much and leads to poorer performance
by the GA. Notice however, that this introduces a subtle type of mutation because
the dihedral that is disrupted by the cut point does not assume the angular value
of either of the parents. By not restricting the cut point positions, we find that
premature convergence occurs less often and that lower energies are found.

Finally the mutation operator acts by flipping bits in the binary chromosome.
Each bit has a probability equal to R,, of being flipped from 1 to 0 or vice versa.
Mutation rates are typically quite low, on the order of 0.04. An important detail is
that the entire population is not regenerated at each generation. The top 10% of
the old population is moved into the new population and all but the single best are
subjected to the mutation operator, meaning that they are mutated with the same
low probability as the rest of the members of the new population. We always use the
elitist strategy in which the most fit individual in each generation is passed directly to
the next without crossover or mutation. This ensures that the best individual is never
lost, but continues to be available for mating. Note that this individual is transferred
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directly from generation ¢ to ¢ + 1 but also produces offspring that make up part of
generation ¢ + 1.

Additionally, during replication there is a small probability of a bit flip or mu-
tation in a chromosome. This serves primarily to maintain diversity and prevent
premature convergence that occurs when a single very fit individual takes over the
entire population early in the evolutionary process. To bound the magnitude of the
effect of mutations, the binary chromosomes are Gray coded [17]. An integer that
is represented as a Gray coded binary number has the property that most single bit
flips change the value of the integer by +1.

We have the ability to run multiple sub-populations simultaneously. At periodic
intervals, these populations can communicate by passing the best individual from each
population to each of the others.

During the crossover operations, a niching operation is used. As prospective new
members of the population are created, they are compared to those already accepted,
by measuring the Hamming distance. The Hamming distance is the fraction of bit
positions that have different values in the two chromosomes. The prospective new
member is rejected if it is too similar to ones already present. Initially, an individual
must differ by 40% from every other individual (that is, no more than 60% of the bits
in the two can by set the same.) As the population fills up, this criteria becomes too
restrictive and it is slowly relaxed until the population is filled.

3.2. Direct Search Methods. Direct search methods belong to a class of opti-
mization methods that do not compute derivatives. Examples of direct search methods
are the Nelder-Mead Simplex method [35], Hooke and Jeeves’ pattern search [20], the
box method [4], and Dennis and Torczon’s parallel direct search algorithm (PDS) [12].

The PDS algorithm can be described as follows. Starting from an initial sim-
plex S,, the function value at each of the vertices in S, is computed and the vertex
corresponding to the lowest function value, v,, is determined. Using the underlying
grid structure, the simplex S, is rotated 180° about v, and the function values at the
vertices of this rotation simplex, S,., are compared against v,. If one of the vertices
in the simplex S, has a function value less than the function value corresponding to
Vo, then an expansion step to form a new simplex, S., is attempted in which the size
of S, is expanded by some multiple, usually 2. The function values at the vertices of
S, are compared against the lowest function value found in S,.. If a lower function
value is encountered, then S, is accepted as the starting simplex for the next iteration;
otherwise S, is accepted for the next iteration. If no function value lower than the one
corresponding to v, is found in S,., then a contraction simplex is created by reducing
the size of S, by some multiple, usually 1/2 and is accepted for the next iteration.

Because PDS only uses function comparisons, it is easy to implement and use.
Since the rotation, expansion, and contraction steps are all well-determined it is pos-
sible to determine ahead of time a set of grid points corresponding to the vertices
of the simplices constructed from various combinations of rotations, expansions, and
contractions. Given this set of grid points, called a search scheme, the PDS algorithm
can compute the function values at all of these vertices in parallel and take the vertex
corresponding to the lowest function value. An interesting consequence of this ap-
proach is that the PDS algorithm can jump out of local wells by using a large enough
search scheme size. By varying the size of the search scheme one can therefore use the
PDS algorithm as a means of efficiently generating conformations in a manner similar
to GA and simulated annealing.

It is also worthwhile to contrast PDS with grid search methods. In a grid search
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method the grids are generated by starting with a fixed molecule and systematically
varying one of the internal variables. This method works well for small molecules but
becomes computationally prohibitive for larger molecules. The grid in PDS however
is adaptive and will automatically change in response to the contours of the energy
surface.

4. Energy Minimization Using Constraints. The search method chooses
candidate conformations for which the fitness must be evaluated. Fitness is usually
some measure of the smallest potential energy that can be achieved from the candidate
conformation. A simple measure is to compute the energy E for the conformation
using equations (1)—(8). Much better results can be obtained by performing a local
gradient minimization of the energy starting from the conformation chosen by the
search method. However, gradient minimizations can be computationally expensive,
especially for large molecules. We have chosen an alternative that makes a physically
intuitive compromise. In this approach, the covalent structure of the molecule is fixed
and local minimization is performed with only the dihedral angles as variables. This
is also known as minimizing in torsion space [34]. The number of dihedral variables
is much smaller than the number of atoms, so the minimization problem is easier to
solve. In addition, fixing bond distances and bond angles eliminates many local energy
minima that are similar in depth; hence, torsion space minima produce a simpler but
still physically meaningful picture of the accessible conformations of a molecule.

It is possible to perform energy minimization in torsion space by expressing the
potential energy and its analytic derivatives in terms of the dihedral variables. This
approach was pioneered by Scheraga and coworkers in their ECEPP program [34]
and has also been pursued by Go et al. [2, 44] and Abagyan et al. [31, 1]. One
of the difficulties with performing calculations in torsion space is that a complicated
transformation of variables is required to go from Cartesian coordinates to a set of di-
hedral variables. The CHARMm potential energy model is most naturally expressed
as a function of the Cartesian coordinates of each atom. Transforming this model to
use dihedral variables and then computing analytic derivatives is quite complicated,
usually requiring topological analysis of the molecule, definition of multiple local co-
ordinate frames, and the use of matrix operators to link the local coordinate systems
(see [16, 2, 31] for examples). In addition, the number of operations necessary to make
a transformation is proportional to the square of the number of dihedral variables;
thus, computational costs increase rapidly as larger molecules are examined.

Instead of transforming the potential energy to torsion space, we find a set of
distance constraints between pairs of atoms that serves to restrict all molecular mo-
tion except rotation of specified dihedral angles. The distance constraints are simple
quadratic functions in Cartesian coordinates. Thus, we minimize the usual potential
energy function subject to a set of quadratic equality constraints, all in Cartesian co-
ordinates. Our constrained problem is equivalent to minimizing in torsion space in the
sense that we find the same set of local minima. However, the intermediate molecular
conformations generated during our minimization are different. Our approach avoids
the mathematical complexities associated with transforming to dihedral variables.
We have a simple method of finding an appropriate set of distance constraints that is
easily automated. Also, we are able to maintain variable sparsity in our constrained
formulation, keeping the linear algebra costs manageable even for large molecules.

The chief advantage of our approach is that it makes numerical energy minimiza-
tion in torsion space much simpler. Our method poses a minimization problem with
nonlinear equality constraints in Cartesian coordinates instead of an unconstrained
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problem in internal coordinates. We have employed a code [26] based on sequential
quadratic programming (SQP) methods that seems well suited to the constrained
molecular mechanics problem. An SQP method treats the constraints explicitly and
does not require the elimination of the dependent variables from the nonlinear con-
straints. The algorithm utilizes sparse linear algebra techniques to solve all subprob-
lems and operates as a quasi-Newton or truncated Newton method with only first
derivative information.

4.1. Dihedral variables and constraints. We follow Scheraga [34] and fix
the covalent structure of the molecule except for the rotation of dihedral angles. This
simplified model determines an approximate molecular conformation by changing di-
hedrals in response to non-bonded and dihedral angle forces. Dihedral angles are now
the primary variables of the problem — atom positions are computed from knowledge
of the dihedrals and the fixed bond distances and angles. An unconstrained mini-
mization can be carried out in torsion space if we can calculate the gradient of the
potential energy with respect to dihedral variables; that is, if we can transform the
Cartesian force vector into dihedral coordinates. The transformation can be done
analytically as in [2, 31], but the equations are extremely complicated to derive and
to program. We wish to show how the transformation of coordinates can be avoided
using distance constraints between pairs of atoms.

Let us consider the simple example of ethane in Figure 1. It has a single dihedral
angle, whose rotation is illustrated by the arrow. Usually, two planes are specified,
such as H1-C1-C2 and C1-C2-H2, and the dihedral is defined as the angle between
the two planes about the axis C1-C2. Now if all bond distances and angles in the
ethane molecule are fixed, then the methane group on the left containing C1 and H1
is a rigid body that rotates about the C1-C2 axis. The methane group on the right
is a similar rigid body. Thus, rotation about a dihedral can be characterized as the
relative rotation of two rigid bodies about a common axis.

H1 H2

Cl
C2

FiG. 1. Dihedral rotational in ethane

Figure 2 shows the ethane molecule with distance constraints (drawn as dashed
and dotted lines) for the two methane groups. The distance constraints can be thought
of as rigid bars or virtual bonds between atoms that restrict motion. The dashed
constraints define a rigid five-point polyhedron on the left and the dotted constraints
do the same on the right. The figure shows that these two rigid pieces are connected
together in such a way that they can spin about the C1-C2 axis, but cannot otherwise
move in relation to each other. Note in particular that the distance constraints for
each rigid piece include the dihedral axis and reach across it.

In Figure 2 there are 8 dashed, 8 dotted, and one dash-dot line between C1 and
C2, for a total of 17 constraints. In general a set of n points describing a rigid body
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R < 0

Fi1Gc. 2. Distance constraints allowing only dihedral rotation in ethane. There are 17 constraints
restricting molecular motion.

in three dimensions has six degrees of freedom (three for translation and three for
rotation with respect to an external coordinate system); therefore, 3n — 6 constraints
are needed to make the body rigid. Each rigid polyhedron in Figure 2 contains 5 atoms
and (3 x 5) — 6 = 9 distance constraints (the C1-C2 constraint is shared by both).
The ethane molecule as a whole can freely translate and rotate, and its dihedral angle
gives it one internal degree of freedom; therefore, it should have (3 x 8) —6 —1 =17
constraints. This is exactly what Figure 2 shows.

Our method generalizes easily to molecules with more than one dihedral. Suppose
there are two dihedrals dividing a molecule into three pieces. The idea is to make each
piece into a rigid polyhedron, then connect them together in pairs to allow rotation
about the two dihedral axes. The end polyhedrons are treated just like the rigid
methane groups in ethane. The middle polyhedron connects to two dihedral axes,
but these dihedrals are necessarily distinct and do not interact with one another.
Clearly we can extend this idea to any number of dihedrals, as long as they are truly
free to rotate in the molecule (a single dihedral in a closed chain does not have full
freedom, for instance).

Our procedure allows us to choose distance constraints for each rigid piece in-
dependently of the other pieces; that is, it is a strictly local procedure. Internal
coordinate methods also divide the molecule into rigid pieces, but require a topology
tree of interdependencies between the pieces [2, 31]. The tree describes which pieces
move when a particular dihedral rotates, and then a calculation is made involving all
affected pieces to determine the constrained motion resulting from a dihedral rotation.
The global interdependence of pieces results because internal coordinate methods are
eliminating variables. We add constraints to the problem instead of eliminating vari-
ables, side-stepping the problem of calculating coupled rigid body motions.

4.1.1. Choosing the best constraints for a rigid piece. We specified 9
distance constraints to make each of the five-atom polyhedrons in Figure 2 rigid.
There are 10 possible atom-to-atom distance pairs, only 4 of which correspond to the
length of a real chemical bond. This is not an unusual situation. In general, a set of
n points has (n? —n)/2 possible distance pairs, of which we need 3n — 6. A molecule
with no rings has only n—1 chemical bonds, so we face a growing surplus of constraint
options as n increases.

For a rigid piece with n > 4 atoms we could add on distance constraints atom-by-
atom as in [10]. This is a logical procedure, but it turns out that from an optimization
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perspective there is a “best” set of 3n — 6 distance constraints. Each constraint is a
quadratic equation in six unknown atom positions. For example, if R;; is the fixed
distance between atoms ¢ and j, then the corresponding constraint equation is

(@ —)* + (yi — y;)” + (2 — 2))” = R}

To solve the constrained optimization problem we will employ the transpose of the con-
straint Jacobian matrix defined by the gradients of the constraint equations. It is im-
portant to an optimization algorithm that this matrix be numerically well-conditioned;
that is, that its columns be as linearly independent as possible. We define the “best”
set, of distance constraints as the set for which the matrix of gradients has the smallest
condition number.

The best set of constraints is found automatically using a rank-revealing QR fac-
torization [18]. We first assemble a matrix containing the gradient vectors for every
possible distance constraint, arranged in any order. The rank-revealing factorization
is a Gram-Schmidt orthogonalization procedure that chooses the next column (that
is, constraint gradient) to be eliminated by examining the size of all remaining pivot
elements. It passes through the entire matrix and returns an optimal ordering of con-
straints with their pivot sizes. The first 3n — 6 constraints chosen by the factorization
give a matrix with the desired small condition number. We use the LINPACK [13]
subroutine dqrdc to perform the factorization.

A moment’s consideration of Figure 2 reveals that we do not have total freedom
in choosing our constraint set. We must make sure that we include the distance
constraints that fix the lengths of any dihedral axes connected to our rigid piece (for
ethane, this is the rigid bar C1-C2). Otherwise, two connecting rigid polyhedrons
would have the freedom to shift along their common dihedral axis as well as rotate
around it. Fortunately, dqrdc has the capability of forcing specified constraints to be
in the front of the QR factorization matrix.

One other important detail needs discussion. What if the atoms forming a rigid
section of the molecule are coplanar? In this case the rank-revealing QR factorization
finds only 3n — 7 nonzero pivots. The corresponding distance constraints force the
atoms to be rigidly connected within a plane, but they do not force the atoms to
remain coplanar (see [3, p. 95], for instance). As discussed in [40], subroutine dqrdc
can easily detect nearly coplanar sets of atoms, and CCEMD [22] allows us to introduce
fictitious noncoplanar atoms that keep the constraint Jacobian well-conditioned.

Let us summarize our method for choosing the distance constraints. A molecule
is provided with bond lengths and bond angles already fixed at desired values, and a
set of d dihedrals is specified.

Procedure for defining the distance constraints.

1. Using the d dihedral angles, partition the molecule into d + 1 nonoverlapping
pieces, assigning each atom to exactly one piece. (We assume for simplicity
that closed rings do not have free dihedrals.)

2. For the ith piece, i running from 1 to d + 1:

a. Define a set S; consisting of all the atoms in the piece, plus the atom
on the opposite of every dihedral axis connected to this piece. Let n; denote
the number of atoms in S;.

b. Consider all pairwise distances between points in the set S;, and con-
struct a matrix whose columns are the gradients of these quadratic distance
constraint equalities. The matrix has 3n; rows and (n? — n;)/2 columns.
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c. Perform a rank-revealing QR factorization on the matrix to find the
best 3n; — 6 distance constraints. Force the factorization to include the dis-
tance constraints between atoms that define the dihedral axes touching this
piece. (If the magnitude of pivot number 3n; — 6 is less than 102 times the
magnitude of the first pivot, then add a fictitious noncoplanar atom to S; and
go back to step 2b).

3. Combine all the distance constraints generated for each piece. Notice that
the constraint between the two atoms defining a dihedral axis shows up twice
because it was specifically included in each of the two pieces it joins. Keep
just one of these two copies.

A straightforward calculation shows that this procedure generates the correct
number of constraints. Let n be the total number of atoms in the molecule. The
whole molecule has 6 external and d internal degrees of freedom, so this procedure
should find a total of 3n —6 — d distance constraints. Let d; be the number of dihedral
angles touching the ith piece. Since each dihedral touches exactly two different pieces,
we see that

In step 2a we included in S; the atom on the opposite side of the axis for each dihedral
touching a piece. Taking it back out gives a strict partitioning of the molecule, so

d+1

Z(nz — dl) =n.

i=1

Now the total number of constraints collected in step 3 is just the sum of the number
found for each piece minus the extraneous copy of each dihedral axis constraint. If
we simplify this number using the previous equations, we obtain the correct number
of constraints:

d+1 d+1 d+1
> Bni—6)—d = Y (3n;—3d;)+ > (3d; —6)—d
=1 =1 i=1

= 3n+32d)—6(d+1)—d

= 3n—-6—d.

This procedure also works when free dihedrals are present in closed loops of atoms,
provided we check that no duplicate distance constraints are generated between the
rigid pieces comprising a loop. Duplicate constraints could conceivably arise between
pairs of atoms on different dihedral axes within a loop. This is unlikely if the loop
contains many dihedrals, as, for example, in our work with proteins where loops result
from cysteine disulfide bridges.

4.2. An optimization algorithm for large-scale constrained optimiza-
tion problems. In the previous section we showed how to define distance constraints
so that only specific dihedral variables can change. This section describes the opti-
mization algorithm used to solve the constrained energy minimization problem. The
theory underlying this algorithm stems from the work of Byrd [6] and Omojokun [36]
in the area of trust regions for equality constrained optimization. A general purpose
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software implementation of the algorithm called ETR was created with large-scale
applications in mind [26, 39].
We are faced with solving the constrained algebraic optimization problem

(9) min E(mlaylazla---;fn;ynazn)

(10) subject to (#i —25)* + (i —y;)* + (2: — 2;)> = R};, for 4,5 €D,

where the position of atom i in a Cartesian coordinate system is denoted by the triple
(@i, yi, 2i), the fixed Euclidean distance between atoms ¢ and j is the constant R;;,
and D is an index set containing the full list of distance constraints. The variables in
this problem are the 3n coordinates of the atoms. The number of equality constraints
is 3n — 6 — d, which can be a large number if we specify only a few dihedrals to be
free. The potential energy E is calculated in Cartesian coordinates by some molecular
dynamics code in accordance with a given force field model. We assume that F is a
continuously differentiable function of the variables and that its gradient (the negative
of the force on every atom) can be calculated.

4.2.1. ETR algorithm for equality constrained optimization. The ETR
algorithm is based on sequential quadratic programming (SQP), a standard approach
for solving optimization problems with nonlinear equality constraints [14, 15]. To use
more general notation, let z € RN be the vector of variables, flz) : RN = R the
function to be minimized, and c(z) : RN — RM the set of M equality constraints.
The general constrained minimization problem is then written as

(11) mmin f(x) subject to ¢(z) = 0.

Basically, an SQP method adds a Lagrange multiplier variable \; for each of the
M constraints and applies Newton’s method to the resulting system of equations. The
Newton method generates a sequence of iterates {2°,z!,... 2%, ...} that converge to
a solution of problem (11). For a given iterate z¥, a quadratic Taylor series expansion
of (11) determines the SQP subproblem

(12) min F@®) +pTVf(a*) + 3p"W (2", ) p
(13)  subject to ci(z%) + pT'Ve;(z¥) = 0, for e=1,...,M.

We minimize this simpler subproblem to find the next iterate z**!. Note that f(z*),
c(z?), Vf(z*), Vei(zF), and W (z*, \¥) are constant quantities in the optimization
subproblem. The variable p € RN is a distance vector from the point z*, so that
(12) represents a quadratic function in the components of p and (13) defines linear
approximations to the constraints that p must satisfy. The matrix W is the Hessian
of the Lagrangian

M
Wz, \¥) = V2 f (%) + Z MNew2e; (%),

i=1

which contains all second-order derivative information. The solution to (12)-(13) is a
vector p*, known as the step at the current iterate z*. In a pure Newton method the
next iterate is calculated directly as z*T! = pk + 2*.

For unconstrained optimization it is well-known that Newton’s method only works
if the starting iterate 2° is already close to a solution. The same is true for constrained
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optimization. To make the SQP method work for an arbitrary starting guess we em-
ploy a trust region globalization technique. (Another common globalization technique
uses line searches.) This is just a mechanism for judging the accuracy of subproblem
(12)-(13) as a suitable model for the real problem (11), which is not quadratic. The
trust region is a hypersphere about the point z* with radius A. It is used to limit
the length of the step p by appending to subproblem (12)-(13) the inequality

(14) Ipll <A

(I] - ||l2 stands for the Euclidean norm of a vector). The idea is to make A smaller
when the accuracy of the model seems poor. Since a significant amount of work goes
into constructing and solving the SQP subproblem, however, a smart trust region
algorithm acts to increase A when the accuracy seems good, thereby allowing bigger
steps towards a solution.

There are a variety of ways to enforce the trust region inequality (14) while solving
(12)-(13). We use the method of Byrd [6] and Omojokun [36] because it allows efficient
solution of large-scale problems. Our software implementation of this method is called
ETR (for Equality constrained optimization using Trust Regions) and is explained in
detail in [26, 39].

The ETR code computes a step p* as the sum of two orthogonal vectors. One of
these, the vertical step, attempts to satisfy the linearized constraint equations (13).
If we collect the gradient vectors of each constraint into the N x M matrix

(15) A(zF) = Ve (z%) Ve (ab) - VCM(CEk)],

then all M equations in (13) can be written collectively as [A(z*)]Tp* + c(z¥) = 0. Tt
turns out that the vertical step v € R computed by ETR always lies in the range
space of A(x*); that is, v is a linear combination of the columns of A(z*).

The other part of p* is called the horizontal step. It seeks to minimize the function
(12) without disturbing the improvements made by v. To accomplish this it must be
orthogonal to every constraint gradient, so we use sparse linear algebra techniques to
construct an N x (N — M) matrix Z* that satisfies the equation [A(z*)]TZ*¥ = 0. Then
the horizontal step is expressed as a vector Z*u, where u € RN~M are variables that
are chosen to minimize (12) as much as possible. The (N — M)-dimensional subspace
spanned by the columns of Z* is the reduced subspace of problem (12)-(13); that is,
the subspace left after imposing the M linearized constraints of (13). The vector u
has one component corresponding to each degree of freedom in problem (12)-(13).

ETR forms the step as p* = v + Z*u. To judge the accuracy of this step we
use the merit function f(z* + p*) + ullc(z* + p*)|l2, where p > 0 is a parameter
that controls the relative importance of minimizing f and of satisfying the equality
constraints. The method for choosing p and other important details are documented
in [26].

4.2.2. Applying the ETR algorithm. For a molecule with n atoms and d
free dihedrals, the size of the optimization problem is N = 3n and M = 3n — 6 — d.
It takes one computation of the potential energy and interatomic forces in Cartesian
coordinates to get f(z*) and V f(z*). The values of the constraints and their gradients
must also be computed to get ¢(z*) and Ve;(z*); however, these are much cheaper
(the computation is roughly equivalent to evaluating the energy and forces due to just
the bond lengths). The second derivative information in W is usually approximated
by a quasi-Newton matrix. A classical BFGS approximation is appropriate, but for
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large problems the storage requirements of the full matrix or its representation can
become prohibitive. For this reason we use a compact limited memory BFGS [28, 9]
approximation for W, which stores only 10 vectors of length 3n. Thus, the cost of
setting up subproblem (12)-(13) is determined primarily by the cost of one evaluation
of the potential energy and forces.

The vertical step v depends on c(z*) and the constraint gradients collected in
A(z*), both of which were computed in setting up the SQP subproblem. ETR cal-
culates v by treating the linearized constraint equations (13) as a linear least squares
problem with a trust region; that is, by solving

min [le(z®) + [A(z*)]Tv]| subject to ||v|]2 < 0.8A.

Computing v involves some linear algebra operations with the matrix A(z*), but
these are fairly cheap because we chose the distance constraints to make A(x*) well-
conditioned, and because this is an extremely sparse matrix. As explained in [40],
the sparsity of this matrix is a distinct advantage over methods which transform all
Cartesian variables to dihedral variables.

Computation of the horizontal step is similar to a standard unconstrained quasi-
Newton minimization of the potential energy. The main differences are the presence of
Lagrange multipliers in the quasi-Newton Hessian approximation, and the restriction
that the horizontal step be in the form Z¥u. But the multipliers and Z* both derive
from AF, which is well-conditioned and computationally cheap to work with. Also, the
complexity of dealing with Z* is somewhat offset by the smaller size of the reduced
space minimization subproblem (its dimension is N — M = 6 + d).

In summary, we expect the cost of solving each SQP subproblem to be domi-
nated by the cost of evaluating the potential energy and interatomic forces at the
current iterate. There is one force evaluation per subproblem, the same as in most
unconstrained minimization algorithms. The extra overhead of solving for nonlinear
constraints is not large and should scale linearly with the size of the molecule. If we
assume that the potential energy and interatomic forces can be calculated separately,
then we obtain the simple outline of the ETR algorithm shown below.

General description of the ETR algorithm for solving (9)-(10).
1 Choose a molecular conformation and load initial atom positions into z°
2 Make one energy evaluation to get f(2°) and c(z°)
3 Initialize A >0, WO =T, and k=0
4 Begin the main loop
Make one force evaluation to get V f(z*), and compute A(z*) using (15)
Compute Z* from A(z*)
Use A(z*) and Vf(2*) to compute Lagrange multiplier estimates A\*
4a if |Vf(z*) — A(z*)N¥||w < € and ||c(z*)||o < € then return success
4b Use A(z*) and c(z*) to compute a vertical step such that ||v|]2 < 0.8A
Use Vf(z*), W¥ and Z* to compute a horizontal step with ||Z*u[|3 < A2 — ||v||?
Set pF = v + ZFu
Make one energy evaluation at the new trial point to get f(z* + p*) and c(z* + p¥)
if the trial point is not a sufficiently good improvement over z*
then A < v ||p¥||2, goto 4b
else zFt! =2% 4 pF A « A, update the /-BFGS matrix W*
Increment k£ and goto 4
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The main loop of the ETR algorithm sets up a series of SQP subproblems. The
inner loop beginning at 4b finds a suitable step p* that solves the subproblem. ETR
decides at 4a that it has converged if first-order optimality conditions are satisfied
to a tolerance e. This means that every distance constraint is within e of its proper
length, and that every component of the reduced gradient is smaller than e. The trust
region size A is updated after every trial point using the parameters v; and 7,. For
best algorithm performance we used 0.1 < v < 0.5 and 2 < 5 < 5, with the exact
value determined by how much improvement was made in the merit function by the
trial point (see [26] for details).

5. Computational test results. In this section we present computational re-
sults which show the relative effectiveness of two global search strategies. The GA
and PDS algorithms were used to generate a large number of candidate starting con-
formations. The fitness of each candidate was evaluated by calculating a local energy
minimum in torsion space using our constrained optimization method. From this data
we plotted the low energy spectrum revealed by each global search scheme. We expect
to observe that both the GA and PDS algorithms preferentially find low energy min-
ima. Our experiments provide some quantification of the effectiveness of the search
strategies. In addition, we will see whether the methods reveal the structure of the
spectrum at higher energies.

5.1. Test Problems. We chose two small synthetic peptides for this investiga-
tion, whose characteristics are summarized in Table 1. The peptides were prepared by
using QUANTA [41] and were built with no hydrogens to reduce the CPU time for the
energy calculations. The energy of each molecule was first gradient-minimized with-
out, constraints to form the reference conformation. Although the test molecules are
fairly small, they possess a large number of distinct local energy minima. Assuming a
simple three-fold symmetry about each dihedral, we expect on the order of 3* ~ 100
distinct minima in torsion space for Thr-Ala, and 3% =~ 6500 for Thr-Ala-Leu. Our
objective is to identify all the minima within 10 kcal/mol of the global minimum.

TABLE 1
Test molecule characteristics

sequence number of atoms | number of dihedrals
Thr-Ala 13 4
Thr-Ala-Leu 21 8

Each global search strategy varied the dihedral angles to generate a particular
starting conformation of the molecule. Bond distances and bond angles were held
fixed during this procedure. Our constrained optimization method was applied to
each starting conformation and run until a local energy minimum in torsion space
was found. The constraint equations were enforced so that rigid interatomic distances
did not change by more than 107> A. We carried out the local minimization to an
unusually tight tolerance, requiring the Euclidean norm of the force vector expressed
in dihedral variables to be less than 10~® kcal/mol/A. The tolerance is more accurate
than the chemical model warrants, but our goal was to reliably distinguish between
neighboring energy minima and provide a complete map of all low energy minima,
similar to [43]. The size and average execution time of the constrained minimization
problems are reported in Table 2. All calculations were performed on an SGI Power
Challenge with a 75 MHz MIPS R8000 processor.
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TABLE 2
Constrained optimization problem sizes

problem number of unknowns | number of constraints | average CPU time
Thr-Ala 39 29 0.62 seconds
Thr-Ala-Leu 63 49 4.15 seconds

5.2. Energy Minimization Results. We accumulated data for three variants
of the GA and PDS search strategies, which are listed in Table 3. The three runs
differed primarily in the number of candidate conformations that were generated:
1,000 for the first run, 5,000 for the second, and 40,000 for the third run. In addition,
we generated start points from a completely random distribution of dihedral angles.
We do not suggest that this is a viable search strategy; it was used merely to help fill
in the energy spectrum of the test molecules.

The three GA runs differed in the size of the population making up each generation
and in the number of generations, as shown in Table 3. The third run also included
niching operations between four sub-populations. The ‘chromosomes’ of the GA runs
were 20-bit representations of the dihedral angle variables. We used a mutation rate
of 0.01.

The three PDS runs were identical except for the total number of candidate points
generated and the search scheme size. The search scheme size was set to 64 vertices for
the Thr-Ala problem and to 256 vertices for the Thr-Ala-Leu problem. In addition,
we modified the standard PDS algorithm so that it didn’t generate any contraction
points in the scheme. The effect of this modification is to allow the method to generate
a coarser but broader scheme. Since we are using PDS solely as a search method and
we are not concerned with finding a local minimum this allows us to explore more
points overall.

TABLE 3
Description of global search strategies. Fach line shows a search strategy for choosing dihedral angles
to generate different molecular conformations.

Each dihedral treated as a uniformly random variable

GA with 20 generations, 50 individuals per generation

GA with 50 generations, 100 individuals per generation

GA with 100 generations, 100 individuals per generation, and 4 niches
PDS for a total of 1,000 conformations

PDS for a total of 5,000 conformations

PDS for a total of 40,000 conformations

SO W N =IO

The set of local energy minima found from each global search scheme was col-
lected and analyzed for unique conformations. This was done by clustering together
final conformations whose energies differed by less than 0.00005 kcal/mol and whose
dihedral angles differed by less than 0.1 degree rms. This first clustering criteria
was applied to filter out “distinct” local minima which we feel were distinct only be-
cause the gradient minimization was not carried to a higher precision. Then a second
clustering operation was applied to reduce the minima to a more chemically mean-
ingful set. The members of each of these clusters had energies within 0.1 kcal/mol
and dihedrals within 1.0 degree rms. To form these clusters, we examined the list of
minima from lowest energy to highest and placed each conformation in an existing
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cluster if its energy and dihedrals differed by less than the tolerances from every other
conformation already in the cluster.

We report the total number of each cluster type found by the different search
strategies in Tables 4 and 5. Each line shows results for one of the global search
strategies described in Table 3. The first two columns show the total number of
starting points considered by each strategy (# start pts) and the lowest energy found.
The next two pairs of columns each give the number of mathematically distinct local
minima (# math min) and chemically relevant distinct minima (# chem min). The
former are separated by at least 0.00005 kcal/mol or 0.1 degree rms and the latter by
0.1 kcal/mol or 1.0 degree rms. These tables also list the number of local minima found
within 10 kcal/mol of the “global” minimum under the Low energy minima heading.
We take as our estimate of the global minimum potential energy the smallest energy
found by any method during our calculations.

TABLE 4
Search results for Thr-Ala. Low energy minima have energies < 17.9791 kcal/mol.

All minima Low energy minima
strategy # start pts lowest energy # math min | # chem min | # math min | # chem min
0 90,000 | 7.9791 kcal/mol 166 70 56 20
1 1,000 | 7.9791 kcal/mol 47 33 24 15
2 5,000 | 7.9791 kcal/mol 64 36 34 17
3 40,000 | 7.9791 kcal/mol 95 45 46 20
4 1,000 | 7.9791 kcal/mol 63 37 27 13
5 5,000 | 7.9791 kcal/mol 93 48 39 18
6 40,000 | 7.9791 kcal/mol 137 64 50 21
TABLE 5
Search results for Thr-Ala-Leu. Low energy minima have energies < —15.2766 kcal/mol.
All minima Low energy minima
strategy # start pts lowest energy # math min | # chem min | # math min | # chem min
0 90,000 | -24.9003 kcal/mol 8270 4253 1530 695
1 1,000 | -24.7243 kcal/mol 433 371 181 144
2 5,000 | -25.2766 kcal/mol 1190 893 527 329
3 40,000 | -25.2766 kcal/mol 3242 2042 1253 623
4 1,000 | -24.7243 kcal/mol 281 238 98 78
5 5,000 | -24.9920 kcal/mol 1495 1113 404 274
6 40,000 | -25.2766 kcal/mol 5108 2964 1188 587

Table 4 shows that the global minimum for the small Thr-Ala molecule was rela-
tively easy to locate. However, the full set of chemically meaningful low energy states
was harder to locate. From strategies 2 and 5 we see that searching over 5,000 can-
didate conformations turned up 80 % of the low energy minima. Strategies 3 and 6
show that up to 40,000 start points were needed to find all the low energy states.

The number of unknowns doubled in the molecule Thr-Ala-Leu and from Table 5
we see that both strategies were successful in finding the global minimum. The GA
and PDS algorithms located approximately the same number of low energy minima,
but PDS found significantly more high energy states for the same amount of work
(compare strategy 2 with 5, and strategy 3 with 6).

We plotted the local energy minima found by each global search strategy in Fig-
ures 3 and 4. Each column in these figures shows the energy spectrum found by a
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particular search strategy. Each dash represents one local energy minimum after the
second clustering operation was applied; that is, the figures correspond to data in the
columns of Tables 4 and 5 headed by # chem min. In Figure 4, we have plotted all
the energy minima, while Figure 5 shows only the minima within 10 kcal/mol of the
apparent global minimum.

From Figure 3 we see that both the GA and PDS methods succeeded in mapping
the full energy spectrum of the molecule. PDS found a slightly greater density of
states among the higher energies for the same amount of work (compare columns 2
and 5 in the figure). The general structure of the spectrum was evident after only
1000 candidate conformations (columns 1 or 4).

Figure 4 plots only the low energy states of the spectrum of Thr-Ala-Leu. It is ap-
parent that a large number of conformations must be examined to fill in the spectrum,
especially at the lowest energies. With 5000 or fewer starting points (strategies 2 and
5), GA does a noticeably better job at finding the lower energy conformations than
PDS. As the number of starting points increases however, this difference disappears.

6. Summary. We have presented a comparison of two search methods, GA and
PDS, for finding all of the local minima within a prescribed distance of the global
minimum energy of a molecule. The GA method is an optimization algorithm designed
to find the global minimum of a function. The PDS method is a local optimization
method that we have employed as a search method. Although neither of the two
methods was designed for the purpose of finding more than one minimum, we have
shown that in combination with a local gradient-based minimization method they
can find a large number of local minima. Both methods tend to concentrate the
computed minima towards the lower energies in the energy spectrum as the sample
size of starting points is increased. In this sense, it can be argued that both methods
would be appropriate for performing conformational searches.

We have also described some recent work [40] that uses distance constraints be-
tween atoms to allow potential energy minimization of molecules while holding all
bond lengths and bond angles fixed. The constrained energy minima found by this
method are identical to those found by minimizing in torsion space. Our method
operates directly in Cartesian coordinates and avoids the usual difficulties associated
with transforming to internal coordinates. We have presented a simple procedure for
choosing appropriate distance constraints based on linear algebra considerations. It
is simple because our constraints are determined solely by the atoms in a single rigid
piece of the molecule — no analysis of coupled rigid body motions is needed. Our
method requires the solution of a constrained optimization problem in 3n Cartesian
unknowns instead of an unconstrained problem in d dihedral variables. By employ-
ing an optimization algorithm that exploits the sparsity structure of the constraints
the new method has an added advantage over the apparently smaller minimization
problem in internal coordinates.
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Fi1c. 3. Energy spectrum for minimizing Thr-Ala in torsion space. Each mark shows the energy of
a unique local minimum. The column numbers correspond to global search strategies.
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